Proteomic analysis and effects on osteogenic differentiation of exosomes from patients with ossification of the spinal ligament.

脊柱韧带骨化患者外泌体的蛋白质组学分析及其对成骨分化的影响

阅读:18
作者:Nakajima Hideaki, Johnson William E B, Kamitani Mikiko, Watanabe Shuji, Honjoh Kazuya, Kubota Arisa, Matsumine Akihiko
Ossification of the spinal ligament (OSL), including ossification of the posterior longitudinal ligament and ossification of the ligamentum flavum (OLF), is a multifactorial disease that includes genetic predisposition. The association between the rate of ossification in the spinal canal and the severity of myelopathy symptoms is well known, but the degree of progression varies widely among patients. Although many candidate genes and biomarkers have been reported, there are no definitive and quantitative conclusions to date, probably because of low reproducibility due to individual differences. In this study, we focused on exosomes secreted by ossified spinal ligament cells. Exosomes are crucial for intercellular communication during development and progression of disease. In a co-culture study of non-OLF cells with OLF cells, there was increased osteogenic differentiation, including Runx2 and Wnt3a expression, with use of exosome-penetrating filters (1.2 μm) compared to exosome-non-penetrating filters (0.03 μm). Dose-dependent increases in alkaline phosphatase activity and mineral deposition were observed in non-OLF cells treated with OLF-derived exosomes. These results support the hypothesis that OLF-derived exosomes are involved in regulation of osteogenic differentiation. In comparative proteomics analysis, 32 factors were increased and 40 were decreased in OLF-derived exosomes compared to non-OLF-derived exosomes. Molecular network analysis of these 72 factors indicated 10 significant pathways, including the matrix metalloproteinase (MMP) signaling, mTOR signaling, Wnt signaling and VDR-associated pathways. Among the upregulated exosomal membrane proteins in OLF samples, COL IV, FMNL3, mTORC2, and PIP4K showed increased expression with greater ossification, suggesting they may serve as biomarkers of disease activity and therapeutic targets. These factors are involved in the PI3K/Akt/mTOR signaling pathway, and particularly mTOR is known to regulate osteogenic and chondrogenic differentiation. In contrast, fatty acid-binding protein 5, several KRT family proteins, S100A8, SERPINB3, and transglutaminase, were significantly downregulated in OLF-derived exosomes. These findings provide novel insights into the molecular mechanisms underlying OSL pathogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。