Covalent binding of thioredoxin to TXNIP is required for diet-induced insulin resistance in the liver.

硫氧还蛋白与 TXNIP 的共价结合是肝脏中饮食诱导的胰岛素抵抗所必需的

阅读:11
作者:Dagdeviren Sezin, Hoang Megan F, Wang Jialu, Goldberger Tamara, Yu Amelia M, Blair Steven J, Benoit Jake C, Ricci-Blair Elisabeth M, Melnik Veronika Y, Kim Bo-Yeon, Tauer Lauren A, Scholz Julia-Josefine, Worthmann Anna, Schlein Christian, Stone Deborah, Deuitch Natalie T, Aksentijevich Ivona, Schnappauf Oskar, Whited Jessica L, Kim Jason K, Lee Richard T
Hepatic insulin resistance is an important pathophysiology in type 2 diabetes, and the mechanisms by which high-caloric diets induce insulin resistance are unclear. Among vertebrate animals, mammals have retained a unique molecular change that allows an intracellular arrestin domain-containing protein called Thioredoxin-Interacting Protein (TXNIP) to bind covalently to thioredoxin, allowing TXNIP to "sense" oxidative stress. Here, we show that a single cysteine in TXNIP mediates the development of hepatic insulin resistance in the setting of a high-fat diet (HFD). Mice with an exchange of TXNIP Cysteine 247 for Serine (C247S) showed improved whole-body and hepatic insulin sensitivity compared with WT controls following an 8-week HFD. HFD-fed TXNIP C247S mouse livers also showed improved insulin signaling. The Transmembrane 7 Superfamily Member 2 (Tm7sf2) gene encodes for a sterol reductase involved in the process of cholesterol biosynthesis. We identified TM7SF2 as a potential mediator of enhanced insulin signaling in HFD-fed TXNIP C247S mouse livers. TM7SF2 increased Akt phosphorylation and suppressed gluconeogenic markers PCK1 and G6Pc specifically under oxidative stress-induced conditions in HepG2 cells. We also present data suggesting that a heterozygous variant of TXNIP C247 is well tolerated in humans. Thus, mammals have a single redox-sensitive amino acid in TXNIP that mediates insulin resistance in the setting of an HFD. Our results reveal an evolutionarily conserved mechanism for hepatic insulin resistance in obesity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。