Impact of environmental microplastic exposure on HepG2 cells: unraveling proliferation, mitochondrial dynamics and autophagy activation.

环境微塑料暴露对 HepG2 细胞的影响:揭示增殖、线粒体动力学和自噬激活

阅读:11
作者:Najahi Hana, Alessio Nicola, Venditti Massimo, Lettiero Ida, Aprile Domenico, Oliveri Conti Gea, Cappello Tiziana, Di Bernardo Giovanni, Galderisi Umberto, Minucci Sergio, Ferrante Margherita, Banni Mohamed
The rise of microplastic (MPs) pollution presents a pressing environmental issue, raising concerns about its potential health impacts on human populations. Given the critical role of the liver in detoxification and metabolism, understanding the effects of MPs on the human hepatoma cell line HepG2 cells is essential for comprehensively assessing the dangers associated with MPs pollution to human health. Until now, the assessment of the harmful impact of polyethylene (PE) and polyethylene terephthalate (PET) on HepG2 has been incomplete and lacks certain essential data points. In this particular setting, we examined parameters such as cell viability, oxidative stress, mtDNA integrity, mitochondrial membrane potential, and autophagy in HepG2 cells exposed for 72 h to PET and PE at a concentration of 10 µg/mL. Our data revealed that exposure of HepG2 to MPs causes an increase in cell viability accompanied by a heightened ROS and altered mitochondrial function, as revealed by decreased mtDNA integrity and membrane potential. In addition, results demonstrated that exposure to PET and PE activated autophagic events, as suggested by the increased levels of the specific markers LC3 and p62. This last point was further confirmed using bafilomycin, a specific blocker that hinders the merging of autophagosomes and lysosomes, thereby blocking autophagic degradation processes. Given the increasing evidence of food chain MPs contamination and its possible harmful effects, our data should be carefully considered.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。