In mammals, early embryonic gastrulation process is high energy demanding. Previous studies showed that, unlike endoderm and mesoderm cells, neuroectoderm differentiated from human embryonic stem cells relied on aerobic glycolysis as the major energy metabolic process, which generates lactate as the final product. Here we explored the function of intracellular lactate during neuroectoderm differentiation. Our results revealed that the intracellular lactate level was elevated in neuroectoderm and exogenous lactate could further promote hESCs differentiation towards neuroectoderm. Changing intracellular lactate levels by sodium lactate or LDHA inhibitors had no obvious effect on BMP or WNT/β-catenin signaling during neuroectoderm differentiation. Notably, histone lactylation, especially H3K18 lactylation was significant upregulated during this process. We further performed CUT&Tag experiments and the results showed that H3K18la is highly enriched at gene promoter regions. By analyzing data from CUT&Tag and RNA-seq experiments, we further identified that four genes, including PAX6, were transcriptionally upregulated by lactate during neuroectoderm differentiation. A H3K18la modification site at PAX6 promoter was verified and exogenous lactate could also rescue the level of PAX6 after shPAX6 inhibition.
Lactate promotes H3K18 lactylation in human neuroectoderm differentiation.
乳酸促进人类神经外胚层分化过程中 H3K18 的乳酸化
阅读:6
作者:Wu Yu, Wang Yumeng, Dong Yuhao, Sun Ling V, Zheng Yufang
| 期刊: | Cellular and Molecular Life Sciences | 影响因子: | 6.200 |
| 时间: | 2024 | 起止号: | 2024 Nov 20; 81(1):459 |
| doi: | 10.1007/s00018-024-05510-x | 种属: | Human |
| 靶点: | H3 | 研究方向: | 神经科学 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
