Genome-wide mapping of formaldehyde-induced DNA-protein crosslinks reveals unique patterns of formation and transcription-coupled removal in mammalian cells.

全基因组范围内甲醛诱导的DNA-蛋白质交联图谱揭示了哺乳动物细胞中独特的形成模式和转录偶联去除模式

阅读:5
作者:Alshareef Duha, Nguyen Charlie T, Tucker Kayla N, Gearhart Micah D, Tretyakova Natalia Y, Campbell Colin
DNA-protein crosslinks (DPCs) form following exposure to various alkylating agents, including environmental carcinogens, cancer chemotherapeutics, and reactive aldehydes. If not repaired, DPCs can interfere with key biological processes such as transcription and replication and activate programmed cell death. A growing body of evidence implicates nucleotide excision repair (NER), homologous recombination, and other mechanisms in the removal of DPCs. However, the effects of genomic context on DPC formation and removal have not been comprehensively addressed. Using a combination of next-generation sequencing and DPC enrichment via protein precipitation, we show that DPCs induced following exposure to formaldehyde are non-randomly distributed across the human genome, based on chromatin state. The data further show that the efficiency of DPC removal correlates with transcription at loci transcribed by RNA polymerase II. Data presented herein indicate that efficient removal of chromosomal DPCs requires both the Cockayne syndrome group B gene as well as "downstream" TC-NER factor xeroderma pigmentosum group A gene. In contrast, loci transcribed by RNA polymerase I showed no evidence of transcription-coupled DPC removal. Taken together, our results indicate that complex interactions between chromatin organization, transcriptional activity, and numerous DNA repair pathways dictate genomic patterns of DPC formation and removal.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。