Ischemic stroke is a leading cause of death and disability worldwide. Amorfrutin A (AA), a small molecule compound found in Amorpha fruticosa L. (bastard indigo), possesses various activities, including blood glucose regulation, antiinflammatory, analgesic, and tumor suppression. In this study, we used the middle cerebral artery occlusion/reperfusion (MCAO/R) model and the oxygen glucose deprivation/ reoxygenation (OGD/R) model to mimic the ischemia/reperfusion process in vivo and in vitro, respectively. The role of AA in ischemic stroke was evaluated by CCK-8 assay, ELISA, TTC staining, hematoxylin-eosin staining and Western blot assay. AA increased the survival of BV2 or PC12 cells following OGD/R injury. Meanwhile, AA effectively suppressed the release of reactive oxygen species, nitric oxide, and tumor necrosis factor-α (TNF-α) in BV2 or PC12 cells subjected to OGD/R. After 24 h of MCAO/R surgery, AA significantly reduced the neurological deficit score, diminished the cerebral infarct volume, and attenuated brain pathological injury in rats. AA administration significantly increased superoxide dismutase and glutathione peroxidase levels, reduced malondialdehyde production, and inhibited the release of inflammatory cytokines interleukin-1β and TNF-α in the ischemic brain tissue of MCAO/R rats. In addition, AA suppressed Kelch-like ECH-associated protein 1 expression and promoted nuclear factor erythroid 2-related factor 2 (Nrf2), NAD(P)H quinone oxidoreductase 1, and heme oxygenase 1 (HO-1) expression in rat ischemic brain. AA may be a potential drug for the treatment of ischemic stroke. Its antioxidant and anti-inflammatory effects in cerebral ischemia-reperfusion injury may be related to Nrf2/HO-1 signaling pathway.
Amorfrutin A ameliorates cerebral ischemia/reperfsion injury in vivo and in vitro via modulating Nrf2/HO-1 signaling pathway.
阿莫弗林A通过调节Nrf2/HO-1信号通路,在体内和体外改善脑缺血/再灌注损伤
阅读:19
作者:Yang Youxi, Shi Liying, Xu Xiaoting, Luo Bilan, Cui Xing, Tang Lei, Wang Jianta
| 期刊: | Korean Journal of Physiology & Pharmacology | 影响因子: | 2.200 |
| 时间: | 2025 | 起止号: | 2025 Sep 1; 29(5):547-557 |
| doi: | 10.4196/kjpp.24.304 | 研究方向: | 信号转导 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
