This study investigates gold-decorated polycaprolactone/chitosan nanofibers as conductive scaffolds for promoting neuronal differentiation of adipose-derived mesenchymal stromal cells (ADSCs) harvested from the dorsal interscapular region of Wistar rats under electrical stimulation (ES) with optimal rolipram concentrations. The scaffold was fabricated through electrospinning and in situ synthesis of gold nanoparticles (AuNPs). Morphology and AuNPs distribution were evaluated using a Field Emission Scanning Electron Microscope (FE-SEM) and energy dispersive X-ray spectroscopy (EDX). Rolipram, known to increase neuronal cyclic adenosine monophosphate (cAMP) activity and reduce inflammation, was loaded into the scaffolds using alginate hydrogel. The scaffolds were subjected to a release study and tests for ADSC proliferation and differentiation into neuron-like cells. Immunostaining of β-Tubulin III and MAP2 was used to assess the effect of ES, alone and in combination with rolipram, on the efficacy of neuronal differentiation of ADSCs. The distribution of AuNPs was uniform within the scaffolds with an electrical conductivity of 0.12 S.cm(-1). Rolipram significantly improved the development of neurons from ADSCs, and this effect was more prominent at higher concentrations (1 and 5 µM). The study revealed that using an electrical density of 100 mV/mm, in combination with 5 µM rolipram and conductive scaffolds, led to a significant increase in the percentage of MAP2 and β-Tubulin III positive cells and the neuronal differentiation of ADSCs, with further elevation of cAMP levels compared to using 5 µM rolipram without ES. We found that combining rolipram and electrical stimulation at optimized doses and voltages can enhance nerve regeneration applications.
Rolipram and Electrical Stimulation Synergistically Promote Neuronal Differentiation of Adipose-derived Stromal Cells: an in Vitro Study.
罗利普兰和电刺激协同促进脂肪来源基质细胞的神经元分化:一项体外研究
阅读:9
作者:Rahimzadegan Milad, Khaboushan Alireza Soltani, Niknazar Somayeh, Ghahremani Mohammadhosein, Javar Hamid Akbari, Sabzevari Omid, Hassannejad Zahra
| 期刊: | Stem Cell Reviews and Reports | 影响因子: | 4.200 |
| 时间: | 2025 | 起止号: | 2025 Oct;21(7):2218-2236 |
| doi: | 10.1007/s12015-025-10925-5 | 研究方向: | 神经科学 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
