Cerebral Organoid Arrays for Batch Phenotypic Analysis in Sections and Three Dimensions

用于切片和三维批量表型分析的脑类器官阵列

阅读:9
作者:Juan Chen, Haihua Ma, Zhiyu Deng, Qingming Luo, Hui Gong, Ben Long, Xiangning Li

Abstract

Organoids can recapitulate human-specific phenotypes and functions in vivo and have great potential for research in development, disease modeling, and drug screening. Due to the inherent variability among organoids, experiments often require a large sample size. Embedding, staining, and imaging each organoid individually require a lot of reagents and time. Hence, there is an urgent need for fast and efficient methods for analyzing the phenotypic changes in organoids in batches. Here, we provide a comprehensive strategy for array embedding, staining, and imaging of cerebral organoids in both agarose sections and in 3D to analyze the spatial distribution of biomarkers in organoids in situ. We constructed several disease models, particularly an aging model, as examples to demonstrate our strategy for the investigation of the phenotypic analysis of organoids. We fabricated an array mold to produce agarose support with microwells, which hold organoids in place for live/dead imaging. We performed staining and imaging of sectioned organoids embedded in agarose and 3D imaging to examine phenotypic changes in organoids using fluorescence micro-optical sectioning tomography (fMOST) and whole-mount immunostaining. Parallel studies of organoids in arrays using the same staining and imaging parameters enabled easy and reliable comparison among different groups. We were able to track all the data points obtained from every organoid in an embedded array. This strategy could help us study the phenotypic changes in organoids in disease models and drug screening.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。