Multi-Omics Integration: Predicting Progression and Optimizing Clinical Treatment of Hepatocellular Carcinoma Through Malignant-Cell-Related Genes.

多组学整合:通过恶性细胞相关基因预测肝细胞癌的进展并优化其临床治疗

阅读:4
作者:Wang Qianwen, Cheng Lingli, Yan Honglin, Yuan Jingping
Hepatocellular carcinoma (HCC) presents significant intertumoral heterogeneity, complicating prognosis and treatment. To address this, we performed an integrated single-cell RNA-sequencing analysis of HCC specimens using Seurat and identified malignant cells via Infercnv. Through a systematic evaluation of 101 machine learning algorithms used in combination, we developed tumor-cell-specific gene signatures (TCSGs) that demonstrated strong predictive performance, with area under the curve (AUC) values ranging from 0.72 to 0.74 in independent validation cohorts. Risk stratification based on these signatures revealed distinct therapeutic vulnerabilities: high-risk patients showed increased sensitivity to sorafenib, while low-risk patients exhibited enhanced responses to immunotherapy and transarterial chemoembolization (TACE). Pharmacogenomic analysis with Oncopredict identified four chemotherapeutic agents, including sapitinib and dinaciclib, with risk-dependent efficacy patterns. Furthermore, CRISPR/Cas9-dependency screening prioritized SRSF7 as essential for HCC cell survival, a finding confirmed by the identification of protein-level overexpression in tumors via immunohistochemistry. This multi-omics framework bridges single-cell characterization to clinical decision-making, offering a clinically actionable prognostic system that can be used to optimize therapeutic selection in HCC management.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。