BACKGROUND: Tongue muscles contain a much greater number of residual adipocytes than other muscles do, which makes them susceptible to obesity-induced muscle fat remodeling. Tongue fat remodeling leads to obesity-induced obstructive sleep apnea (OSA), which is a common sleep disorder characterized by repeated episodes of upper airway collapse during sleep, resulting in fragmented sleep and oxygen deprivation. Although the obstructive role of fat remodeling in tongue muscles for OSA has been confirmed, the cellular and molecular mechanisms regulating fat remodeling in tongue and its impact on tongue muscles have not been well explored. METHODS: To study the impact of obesity on adipocytes and neuromuscular junctions (NMJs) in tongue muscles, we used a high-fat diet (HFD)-induced obese preclinical model. RESULTS: The results demonstrated hypertrophy of adipocytes and denervation at NMJs in tongue muscles by a HFD. Mechanistically, we revealed that a HFD repressed the expression of growth differentiation factor 10 (GDF10), which is expressed mainly in fibroadipogenic progenitors (FAPs) in skeletal muscles, repressing adipogenesis and maintaining the integrity of neuromuscular connections. We identified sex differences and muscle specificity of Gdf10 mRNA expression in FAPs. To understand how a HFD significantly reduces the level of Gdf10 mRNA expression in FAPs of the tongue, we investigated the epigenetic regulation of Gdf10. We found that a HFD increases miR-144-3p in tongue FAPs, which interferes with Gdf10 mRNA expression and induces adipogenesis. GDF10 overexpression by viral delivery effectively prevented HFD-induced fat remodeling of tongue and limb muscles. CONCLUSION: These findings provide important insight into the role of FAP-derived GDF10 in the interplay between fat contents and tongue muscles in response to obesity and suggest potential therapeutic targets for OSA treatment.
Growth differentiation factor 10 inhibits fat infiltration in tongue muscles of mice with high-fat diet.
生长分化因子 10 抑制高脂饮食小鼠舌肌中的脂肪浸润
阅读:5
作者:Kim Seunghyun A, Xu Christina, Kim Kyungmin, Xu Xiaoxing, Du Yufei, Choo Hyojung J
| 期刊: | Skeletal Muscle | 影响因子: | 4.400 |
| 时间: | 2025 | 起止号: | 2025 Aug 13; 15(1):21 |
| doi: | 10.1186/s13395-025-00389-z | 研究方向: | 信号转导 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
