ELK4 transcription promotes MSI2-mediated progression of non-small cell lung cancer through the TGF-β/SMAD3 pathway.

ELK4 转录通过 TGF-β/SMAD3 通路促进 MSI2 介导的非小细胞肺癌进展

阅读:8
作者:Shi Guo-Cui, Teng Yu-Qing, Zhu Jin-Song, Sun Jia-Wei, Liu Cui, Zhang Yi-Wei
Non-small cell lung cancer (NSCLC) is a primary contributor to global cancer-related mortality. Musashi-2 (MSI2), an RNA-binding protein (RBP), is upregulated in specific NSCLC tumor subgroups. The current investigation evaluated the role and underlying mechanism of MSI2 in NSCLC. The expression levels of ELK4, MSI2, SMAD3, p-SMAD3 and TGFβR1 were assessed via RT-qPCR or Western blot. Chromatin immunoprecipitation (ChIP) and dual luciferase reporter assays were used to confirm the interaction between ELK4 and MSI2. The proliferation, migration and invasion of NSCLC cells were determined via MTT, colony formation, and transwell assays, respectively. A xenograft tumor model was established in BALB/c nude mice. Immunohistochemical (IHC) staining was used to test Ki67 expression. We found that MSI2 and ELK4 expression levels were increased in NSCLC tissues and cells. ELK4 depletion suppressed the proliferation, migration and invasion of NSCLC cells. ELK4 acts as a transcription factor and promotes the transcription of MSI2. MSI2 depletion repressed NSCLC cell proliferation, migration and invasion through the TGF-β/SMAD3 pathway. Overexpression of ELK4 reversed the inhibitory effect of MSI2 repression on NSCLC progression. These results confirmed that ELK4 is a direct regulator of MSI2 expression and that MSI2 promotes NSCLC progression through TGF-β/SMAD3 activation, suggesting the potential clinical value of inhibiting MSI2 in NSCLC.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。