Using novel oxidative phosphorylation inhibitors to attenuate drug resistance in human gliomas.

利用新型氧化磷酸化抑制剂减弱人类胶质瘤的耐药性

阅读:6
作者:Tsai Chia-Kuang, Lin Chin-Yu, Chang Yung-Lung, Yang Fu-Chi, Chou Chung-Hsing, Huang Yu-Chian, Hueng Dueng-Yuan
Glioblastoma multiforme (GBM) is an aggressive brain tumor with a poor prognosis, worsened by resistance to temozolomide (TMZ). TMZ-induced DNA damage is counteracted by the repair enzyme O-6-methylguanine-DNA methyltransferase (MGMT), promoting tumor recurrence. Targeting oxidative phosphorylation (OXPHOS), essential for cellular energy production, offers a potential therapeutic strategy to overcome TMZ resistance and improve GBM treatment outcomes. Gboxin, a small-molecule drug, selectively inhibits OXPHOS by targeting complex V, with minimal toxicity to normal cells. It accumulates in the mitochondria of GBM cells, exploiting their high membrane potential and pH, thereby inhibiting cell proliferation. This study evaluates Gboxin's efficacy in TMZ-resistant (TMZ-R) GBM. Results show that Gboxin suppresses the growth of both TMZ-sensitive and TMZ-R GBM cells by inhibiting proliferation, inducing apoptosis, and reducing OXPHOS activity. These findings were confirmed in an in vivo model, highlighting Gboxin as a promising therapeutic for both TMZ-sensitive and TMZ-R GBM. See also the graphical abstract(Fig. 1).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。