Quantitative characterization of the 3D self-organization of PDAC tumor spheroids reveals cell type and matrix dependence through advanced microscopy analysis.

通过先进的显微镜分析,对 PDAC 肿瘤球体的 3D 自组织进行定量表征,揭示了细胞类型和基质依赖性

阅读:16
作者:Hernández-Hatibi Soraya, Borau Carlos, Martínez-Bosch Neus, Navarro Pilar, García-Aznar José Manuel, Guerrero Pedro Enrique
Pancreatic ductal adenocarcinoma (PDAC) is characterized by an abundant tumor-associated stroma composed from pancreatic stellate cells, which play a critical role in tumor progression. Developing accurate in vitro models requires understanding the complex interactions between tumor cells and their microenvironment. In this study, we present a quantitative imaging-based characterization of the three dimensional (3D) self-organization of PDAC tumour spheroids using a microfluidic platform that mimics key aspects of the tumor microenvironment. Our model incorporates collagen type I hydrogels to recreate the extracellular matrix, activated human pancreatic stellate cells (HPSCs), and various tumor cell types. Advanced imaging techniques, including Lattice Lightsheet Microscopy, allowed us to analyze the 3D growth and spatial organization of the spheroids, revealing intricate biomechanical interactions. Our results indicate that alterations in matrix properties-such as stiffness, pore size, and hydraulic permeability-due to variations in collagen concentration significantly influence the growth patterns and organization of PDAC spheroids, depending on tumor subtype and epithelial-mesenchymal phenotype. Higher collagen concentrations promoted larger spheroids in epithelial-like cell lines, while mesenchymal-type cells required increased collagen for self-organization into smaller spheroids. Furthermore, coculture with HPSCs affected spheroid formation distinctly based on each PDAC cell line's genetic and phenotypic traits. HPSCs had opposing effects on epithelial-like cell lines: one cell line exhibited enhanced spheroid growth, while another showed inhibited formation, whereas mesenchymal-like spheroids showed minimal impact. These results provide insights into tumor-stroma interactions, emphasizing the importance of the cell-specific and matrix-dependent factors for advancing our understanding of PDAC progression and informing future therapeutic strategies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。