Effect of the MIAT/microRNA 130a-3p/Pdgfra axis on retinal microglia activation in mice with chronic retinal hypoperfusion injury.

MIAT/microRNA 130a-3p/Pdgfra 轴对慢性视网膜低灌注损伤小鼠视网膜小胶质细胞活化的影响

阅读:6
作者:Sun Qingqing, Zhang Lei, Zhou Guanghua, Wen Zhicong, Deng Xiaomei, Lin Xiaoshan, Shi Qian, Deng Lvhong
This paper aimed to address the function of the MIAT/miR-130a-3p/Pdgfra axis in retinal microglia activation in chronic retinal hypoperfusion injury (CRHI) mice. CRHI mouse models were constructed through bilateral common carotid artery occlusion (BCCAO). MIAT, Pdgfra, and miR-130a-3p expression levels in retinal tissues and cells were assessed. The expression of genes linked to the Nlrp3 inflammatory vesicle pathway (Gsdmd, Asc, Tlr4, Casp1, and Casp8) was assessed. Serum contents of inflammatory cytokines IL-18 and IL-1β were determined. Iba-1/Casp1/Csdmd expression was tested. Moreover, the interplay between miR-130a-3p and MIAT, as well as associations between Pdgfra and miR-130a-3p were verified. MIAT and Pdgfra expression was enhanced and miR-130a-3p diminished in BCCAO mouse models. MIAT downregulation reduced IL-18 and IL-1β contents and repressed microglia activation in BCCAO mice, and histopathological results also displayed raised mouse retinal thickness and diminished apoptosis. Both inhibiting miR-130a-3p and overexpressing Pdgfra can reverse the delayed effects of MIAT interference on CRHI. MIAT regulates miR-130a-3p to stimulate the expression of Pdgfra, thereby further promoting retinal microglia activation in CRHI mice. This provides potential targets for the development of innovative treatment approaches for retinal disorders.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。