Rapid and high-yield recovery of plasma-derived extracellular vesicles using modified chromatography with soluble protein depletion for biomarker discovery

利用改进的色谱法去除可溶性蛋白,快速高效地回收血浆来源的细胞外囊泡,用于生物标志物发现

阅读:3
作者:Yang You # ,Zhengrong Zhang # ,Samuel Cortes ,Son N Nguyen ,Prakruthi Vadakattu ,Bridgette C Melvin ,Sean D Jr Mann ,Nibedita Basu Ray ,Maria Bregendahl ,Pam J McLean ,Maria Paz Gonzalez-Perez ,Seiko Ikezu ,Tsuneya Ikezu
Extracellular vesicles (EVs) are critical mediators of intercellular communication by transferring proteins, lipid and nucleic acids between cells. EVs in biofluids, particularly blood, have gathered significant interest as potential biomarkers for disease diagnosis. However, isolating EVs from blood poses a challenge due to the high concentration of plasma proteins, which obscure the detection of low abundant EV-associated proteins. Here, we optimized a simplified and efficient method for isolating plasma-derived EVs by combining size exclusion chromatography (SEC) with flow-through chromatography using Capto Core 700 beads. A brief incubation of SEC-derived EV fractions with Capto Core beads (qEV + CC) enabled us to isolate intact, high-purity EVs with reduced soluble plasma protein contamination. As a comparison, MagReSyn-based method was not compatible with elution of intact EVs after the purification and showed significant contamination of soluble plasma proteins. Data-independent acquisition-based liquid chromatography-mass spectrometry of isolated plasma-EVs using the qEV + CC approach identified over 1,000 EV-associated proteins, including an increased presence of brain derived proteins and markers linked to neurodegenerative diseases, such as amyloid precursor protein and apolipoprotein E. These findings were further validated by super-resolution microscopy at a single EV resolution. Bioinformatic pathway and network analyses revealed enrichment of pathways involved in RNA processing, cell adhesion and synaptic function, highlighting the potential of EV molecules for broad disease biomarker discovery. Our findings present an optimized method for efficient purification of plasma-derived EVs, providing a valuable tool for advancing EV-based biomarker development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。