Lung adenocarcinoma (LUAD) is responsible for a substantial portion of cancer-related deaths, carrying a bleak treatment outlook. The application of ferroptosis-focused treatments has shown great potential. This research is committed to uncovering the molecular mechanisms by which Nei Like DNA Glycosylase 3 (NEIL3) impacts ferroptosis in LUAD, in the quest for robust biomarkers. Using The Cancer Genome Atlas database, qRT-PCR, and Western blot (WB), we evaluated the expression of NEIL3 in LUAD tissues and cells, then performed gene set enrichment analysis to identify enriched gene sets. Predictive tools hTFtarget and MoLoTool assisted in identifying potential upstream transcription factors and their promoter binding sites for NEIL3, following which we conducted Pearson correlation analysis. The binding affinity of NEIL3 to Forkhead box protein M1 (FOXM1) was validated with dual-luciferase and chromatin immunoprecipitation assays. Cell viability was determined by measuring MDA and Fe(2+) content in cells with the aid of cell counting kit-8. Lipid reactive oxygen species (ROS) levels were detected by flow cytometry, and WB was employed to evaluate the expression of GPX4 and SLC7A11 proteins. An upregulation of NEIL3 is observed in LUAD tissues and cell lines, particularly within pathways linked to ferroptosis. When NEIL3 was knocked down, there was a decline in the viability of LUAD cells, coupled with elevated MDA, Fe(2+), and lipid ROS levels. Protein expression of GPX4 and SLC7A11 was inhibited, but these phenotypes were rescued by the application of a ferroptosis inhibitor. FOXM1 could interact with the NEIL3 gene promoter, initiating its transcription. In the context of LUAD, the activation of NEIL3 by FOXM1 constitutes the FOXM1/NEIL3 axis that counteracts ferroptosis in LUAD cells.
FOXM1 transcriptionally activates NEIL3 to inhibit ferroptosis in lung adenocarcinoma cells.
FOXM1 转录激活 NEIL3,从而抑制肺腺癌细胞的铁死亡
阅读:7
作者:Hou Hailang, Geng Xinpu, Shao Xingxing, Wang Jindao, Xia Wan, Chen Huijie
| 期刊: | Journal of Clinical Biochemistry and Nutrition | 影响因子: | 1.700 |
| 时间: | 2025 | 起止号: | 2025 Jul;77(1):10-17 |
| doi: | 10.3164/jcbn.24-136 | 研究方向: | 细胞生物学 |
| 疾病类型: | 肺癌 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
