A Cyanobacterial Screening Platform for Rubisco Mutant Variants.

用于筛选 Rubisco 突变体的蓝藻筛选平台

阅读:12
作者:Hoffmann Ute A, Schuppe Anna Z, Knave Axel, Sporre Emil, Brismar Hjalmar, Englund Elias, Syrén Per-Olof, Hudson Elton P
Rubisco is the main entry point of inorganic carbon into the biosphere and a central player in the global carbon system. The relatively low specific activity and tendency to accept O(2) as a substrate have made Rubisco an attractive but challenging target for enzyme engineering. We have developed an enzyme engineering and screening platform for Rubisco using the model cyanobacterium Synechocystis sp. PCC 6803. Starting with the Form II Rubisco from Gallionella, we first show that the enzyme can replace the native Form I Rubisco in Synechocystis and that growth rates become sensitive to CO(2) and O(2) levels. We address the challenge of designing a zero-shot input library of the Gallionella Rubisco, without prior experimental knowledge, by coupling the phylogenetically guided model EV mutation with "in silico evolution". This multisite mutagenesis library of Synechocystis (n = 16) was subjected to competitive growth in different gas feeds coupled to deep sequencing, in order to compare Rubisco variants. We identified an amino acid exchange that increased the thermostability of Gallionella Rubisco and conveyed resilience to otherwise detrimental amino acid exchanges. The platform is a first step toward high-throughput screening of Rubisco variants in Synechocystis and creating optimized enzyme variants to accelerate the Calvin-Benson-Bassham cycle in cyanobacteria and possibly chloroplasts.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。