Pathological analysis of tissue biopsies remains the gold standard for diagnosing cancer and other diseases. However, this is a time-intensive process that demands extensive training and expertise. Despite its importance, it is often subjective and not entirely error-free. Over the past decade, pathology has undergone two major transformations. First, the rise in whole slide imaging has enabled work in front of a computer screen and the integration of image processing tools to enhance diagnostics. Second, the rapid evolution of Artificial Intelligence has revolutionized numerous fields and has had a remarkable impact on humanity. The synergy of these two has paved the way for groundbreaking research aiming for advancements in digital pathology. Despite encouraging research outcomes, AI-based tools have yet to be actively incorporated into therapeutic protocols. This is primary due to the need for high reliability in medical therapy, necessitating a new approach that ensures greater robustness. Another approach for improving pathological diagnosis involves advanced optical methods such as spectral imaging, which reveals information from the tissue that is beyond human vision. We have recently developed a unique rapid spectral imaging system capable of scanning pathological slides, delivering a wealth of critical diagnostic information. Here, we present a novel application of spectral imaging (SI) for virtual Hematoxylin and Eosin (H&E) staining using a custom-built, rapid Fourier-based SI system. Unstained human biopsy samples are scanned, and a Pix2Pix-based neural network generates realistic H&E-equivalent images. Additionally, we applied Principal Component Analysis (PCA) to the spectral information to examine the effect of down sampling the data on the virtual staining process. To assess model performance, we trained and tested models using full spectral data, RGB, and PCA-reduced spectral inputs. The results demonstrate that PCA-reduced data preserved essential image features while enhancing statistical image quality, as indicated by FID and KID scores, and reducing computational complexity. These findings highlight the potential of integrating SI and AI to enable efficient, accurate, and stain-free digital pathology.
AI-Powered Spectral Imaging for Virtual Pathology Staining.
人工智能驱动的光谱成像技术用于虚拟病理染色
阅读:6
作者:Soker Adam, Almagor Maya, Mai Sabine, Garini Yuval
| 期刊: | Bioengineering-Basel | 影响因子: | 3.800 |
| 时间: | 2025 | 起止号: | 2025 Jun 15; 12(6):655 |
| doi: | 10.3390/bioengineering12060655 | 研究方向: | 人工智能 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
