Using in vitro models of hypoxia, episodes of short-term hypoxia/reoxygenation, and ischemia-like conditions, we were able to establish different sensitivities of hippocampal neurons to their damaging factors. Using a combination of fluorescence microscopy and immunocytochemistry methods, it was possible to show that GABAergic neurons are the most vulnerable to the damaging effects of hypoxia and ischemia-like conditions, as they have a special metabolism, which is characterized by increased production of reactive oxygen species and nitric oxide. It was shown that long-term hypoxia causes the death of GABAergic neurons due to the induction of a global [Ca(2+)](i) increase, whereas pyramidal neurons are resistant to 30-min hypoxia. Episodes of short-term hypoxia/reoxygenation activate the phenomenon of hypoxic preconditioning in glutamatergic neurons, while this endogenous protective mechanism is absent in GABAergic neurons. Selective activation of PI3K and PKG, combined with NOS inhibition, potentiates the preconditioning effect of hypoxia/reoxygenation in glutamatergic neurons and partially activates this neuroprotective mechanism in GABAergic neurons, as indicated by diminished post-hypoxic NMDA-induced Ca(2+) transients. These findings suggest that pharmacological intervention can protect GABAergic neuronal populations. The expression of parvalbumin, calbindin, or calretinin in the cytosol of GABAergic neurons contributes to the suppression of the global [Ca(2+)](i) increase during hypoxia/reoxygenation episodes, which correlates with their survival even in the absence of the hypoxic preconditioning phenomenon. Additionally, all three studied calcium-binding proteins showed potential high efficiency in maintaining the bioenergetics of GABAergic neurons during ischemia-like conditions, limiting ROS production by mitochondria and in the cytosol, and reducing nitric oxide formation. In this case, parvalbumin showed the greatest efficiency.
Differential Sensitivity of Hippocampal GABAergic Neurons to Hypoxia and Ischemia-like Conditions Correlates with the Type of Calcium-Binding Protein Expressed.
海马 GABA 能神经元对缺氧和缺血样条件的敏感性差异与表达的钙结合蛋白类型相关
阅读:5
作者:Turovskaya Maria V, Zinchenko Valery P
| 期刊: | International Journal of Molecular Sciences | 影响因子: | 4.900 |
| 时间: | 2025 | 起止号: | 2025 Aug 18; 26(16):7966 |
| doi: | 10.3390/ijms26167966 | 研究方向: | 神经科学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
