Rifaximin Attenuates Liver Fibrosis and Hepatocarcinogenesis in a Rat MASH Model by Suppressing the Gut-Liver Axis and Epiregulin-IL-8-Associated Angiogenesis.

利福昔明通过抑制肠-肝轴和表皮调节素-IL-8相关血管生成,减轻大鼠MASH模型中的肝纤维化和肝癌发生

阅读:6
作者:Nishimura Naoki, Kaji Kosuke, Nishimura Norihisa, Hanatani Junichi, Nakatani Tatsuya, Oyama Masafumi, Shibamoto Akihiko, Tsuji Yuki, Kitagawa Koh, Sato Shinya, Namisaki Tadashi, Tamaoki Satoru, Yoshiji Hitoshi
Metabolic dysfunction-associated steatohepatitis (MASH) is a progressive liver disease linked to fibrosis and hepatocellular carcinoma (HCC). Gut-derived lipopolysaccharide (LPS) promotes hepatic inflammation, fibrosis, and angiogenesis through toll-like receptor 4 (TLR4) signaling. This study examined the effects of rifaximin, a non-absorbable, gut-targeted antibiotic, on MASH-related liver fibrosis and early hepatocarcinogenesis, with a focus on the LPS-epiregulin-IL-8-angiogenesis axis.MASH was induced in Fischer 344 rats using a choline-deficient, L-amino acid-defined high-fat diet (CDAHFD). Rifaximin (30 mg/kg/day) was orally administered for 12 weeks. Liver histology, gene expression, intestinal permeability, LPS levels, and angiogenic markers were evaluated. Rifaximin reduced hepatic inflammation, fibrosis, hydroxyproline content, and fibrogenic gene expression. The number and size of GST-P-positive preneoplastic lesions and proliferation-related genes were decreased. Portal LPS levels and Kupffer cell activation declined, with downregulation of Lbp, Cd14, Tlr4, and inflammatory cytokines. Rifaximin decreased hepatic epiregulin and IL-8 expression, attenuated CD34-positive neovascularization, and suppressed proangiogenic gene expression, accompanied by improved intestinal barrier function and reduced gut permeability. Rifaximin mitigates MASH progression by restoring gut barrier integrity, limiting LPS translocation, and inhibiting fibrogenic and angiogenic pathways. These results suggest its potential as a chemopreventive agent in MASH-related hepatocarcinogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。