The spindle is key to cell division, ensuring accurate chromosome segregation. Although its assembly and function are well studied, the mechanisms regulating spindle architecture remain elusive. Here, we investigate spindle organization differences between Xenopus laevis and tropicalis, leveraging expansion microscopy (ExM) to overcome conventional imaging limitations. We optimized an ExM protocol tailored for Xenopus egg extract spindles, refining fixation, denaturation, and gelation to achieve higher resolution while preserving spindle integrity. Our protocol enables preexpansion immunofluorescence and is seamlessly compatible with both species. To quantitatively compare microtubule organization in expanded spindles between the two species, we developed an analysis pipeline that is able to characterize microtubule bundles throughout spindles. We show that X. laevis spindles exhibit overall a broader range of bundle sizes, while X. tropicalis spindles contain mostly smaller bundles. Although both species show larger bundles near the spindle center, X. tropicalis spindles otherwise consist of very small bundles, whereas X. laevis spindles contain more medium-sized bundles. Altogether, our work reveals species-specific spindle architectures and suggests their adaptation to the different spindle size and chromatin amount. By enhancing resolution and minimizing artifacts, our ExM approach provides new insights into spindle morphology and a robust tool for further studying these large cellular assemblies.
Optimized expansion microscopy reveals species-specific spindle microtubule organization in Xenopus egg extracts.
优化的扩张显微镜揭示了非洲爪蟾卵提取物中物种特异性的纺锤体微管组织
阅读:4
作者:Guilloux Gabriel, Kitaoka Maiko, Mocaer Karel, Heichette Claire, Duchesne Laurence, Heald Rebecca, Pecot Thierry, Gibeaux Romain
| 期刊: | Molecular Biology of the Cell | 影响因子: | 2.700 |
| 时间: | 2025 | 起止号: | 2025 Jun 1; 36(6):ar73 |
| doi: | 10.1091/mbc.E24-09-0421 | 种属: | Xenopus |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
