Surface engineering enhances the therapeutic potential of systemically delivered extracellular vesicles following acute myocardial infarction.

表面工程增强了急性心肌梗死后全身递送的细胞外囊泡的治疗潜力

阅读:5
作者:Mentkowski Kyle I, Tarvirdizadeh Touba, Manzanero Cody A, Eagler Lisa A, Lang Jennifer K
The objective of the study was to assess the therapeutic efficacy of targeting remote zone cardiomyocytes with cardiosphere-derived cell (CDC) extracellular vesicles (EVs) delivered via intramyocardial and intravenous routes following acute myocardial infarction (MI). Cardiomyocyte (CM) cell death plays a significant role in left ventricular (LV) remodeling and cardiac dysfunction following MI. While EVs secreted by CDCs have shown efficacy in promoting cardiac repair in preclinical models of MI, their translational potential is limited by their biodistribution and requirement for intramyocardial delivery. We hypothesized that engineering the surface of EVs to target cardiomyocytes would enhance their therapeutic efficacy following systemic delivery in a model of acute MI. CDC-derived EVs were engineered to express a CM-specific binding peptide (CMP) on their surface and characterized for size, morphology, and protein expression. Mice with acute MI underwent both intramyocardial and intravenous delivery of EVs, CMP-EVs and placebo in a double-blind study. LVEF was assessed by echo at 2- and 28-days post-MI and tissue samples processed for assessment of EV biodistribution and histological endpoints. CMP-EVs demonstrated superior cardiac targeting and retention when compared with unmodified EVs 24 h post-MI. Mice treated with IV delivered CMP-EVs demonstrated a significant improvement in LVEF and a significant reduction in remote zone cardiomyocyte apoptosis when compared with IV delivered non-targeted EVs at 28-day post-MI. Systemic administration of CMP-EVs improved cardiac function and reduced remote zone cardiomyocyte apoptosis compared with IV-administered unmodified EVs, demonstrating a strategy to optimize therapeutic EV delivery post-MI.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。