Cilia directionality reveals a slow reverse movement of principal neurons for positioning and lamina refinement in the cerebral cortex.

纤毛方向性揭示了大脑皮层中主要神经元的缓慢反向运动,以进行定位和层状结构的精细化

阅读:4
作者:Yang Juan, Mirhosseiniardakani Soheila, Qiu Liyan, Bicja Kostandina, Del Greco Abigail, Lin Kevin JungKai, Lyon Mark, Chen Xuanmao
Currently, not much is known about neuronal positioning and the roles of primary cilia in postnatal neurodevelopment. We show that primary cilia of principal neurons undergo marked changes in positioning and orientation, concurrent with postnatal neuron positioning in the mouse cerebral cortex. Primary cilia of early- and late-born principal neurons in compact layers display opposite orientations, while neuronal primary cilia in loose laminae are predominantly oriented toward the pia. In contrast, astrocytes and interneurons, and neurons in nucleated brain regions do not display specific cilia directionality. We further discovered that the cell bodies of principal neurons in inside-out laminated regions spanning from the hippocampal CA1 region to neocortex undergo a slow 'reverse movement' for postnatal positioning and lamina refinement. Furthermore, selective disruption of cilia function in the forebrain leads to altered lamination and gyrification in the retrosplenial cortex that is formed by reverse movement. Collectively, this study identifies reverse movement as a fundamental process for principal cell positioning that refines lamination in the cerebral cortex and casts light on the evolutionary transition from three-layered allocortices to six-layered neocortices.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。