HYTANE-Identified Latrophilin-3 Cleavage by Meprin β Leads to Loss of the Interaction Domains.

HYTANE 鉴定的 Latrophilin-3 被 Meprin β 切割导致相互作用域的丧失

阅读:16
作者:Armbrust Fred, Bickenbach Kira, Koudelka Tomas, Joos Corentin, Keller Maximilian, Tholey Andreas, Pietrzik Claus U, Becker-Pauly Christoph
The metalloprotease meprin β is upregulated in neurons and astrocytes of Alzheimer's disease patients' brains. While the role of meprin β as the β-secretase of amyloid precursor protein (APP) has been characterized, its broader substrate profile within the brain remains largely unexplored. Hence, to identify additional substrates, we conducted N-terminomics of brain lysates from mice overexpressing meprin β in astrocytes employing the Hydrophobic Tagging-Assisted N-terminal Enrichment (HYTANE) strategy. We observed 3906 (82.2%) N-terminal peptides and identified seven new substrates that match meprin β in terms of localization and cleavage specificity. Of note, the meprin β overexpressing mice show mild cognitive impairments caused by amyloidogenic APP processing alongside hyperactivity and altered exploratory behavior seemingly independent of APP cleavage. Hence, latrophilin-3 was of particular interest, as latrophilin-3 defects are associated with hyperactivity in mice and human. In brain lysates from mice overexpressing meprin β in astrocytes as well as in cellulo, we validated the cleavage of latrophilin-3, resulting in the release of two N-terminal domains. These domains promote interactions with neuronal proteins such as fibronectin leucine-rich repeat transmembrane proteins, promoting adequate synapse formation. Thus, meprin β might affect synaptic integrity by cleaving interaction domains of latrophilin-3, potentially exacerbating the observed hyperactivity phenotype.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。