Neural organoids derived from human-induced pluripotent stem cells (iPSCs) provide a model to study the earliest stages of human brain development, including neurogenesis, neural differentiation, and synaptogenesis. However, neural organoids lack supportive tissues and some non-neural cell types that are key regulators of brain development. Neural organoids have instead been cocultured with non-neural structures and cell types to promote their maturation and model interactions with neuronal cells. One component of the brain that does not form de novo in neural organoids is the meninges, a trilayered structure that surrounds the central nervous system and secretes key signaling molecules required for mammalian brain development. Most studies of meninges-brain signaling have been performed in mice or using two-dimensional cultures of human cells, which do not accurately recapitulate the architecture and cellular diversity of the tissue. To overcome this, we developed a coculture system of neural organoids generated from human iPSCs fused with fetal leptomeninges (LPM) from mice with fluorescently labeled meninges (Col1a1-GFP), which we call leptomeningeal neural organoid (LMNO) fusions. This proof-of-concept study tests the stability of the different cell types in the LPM (fibroblasts and macrophages) and the fused neural organoid (progenitors and neurons), as well as the interface between the organoid and meningeal tissue. We test the longevity of the fusion pieces after 30 and 60 days in culture, describe best practices for preparing the meninges sample before fusion, and examine the feasibility of single or multiple meninges pieces fused to a single organoid. We discuss potential uses of the current version of the LMNO fusion model and opportunities to improve the system.
Leptomeningeal Neural Organoid Fusions as Models to Study Meninges-Brain Signaling.
软脑膜神经类器官融合作为研究脑膜-脑信号传导的模型
阅读:21
作者:Jones Hannah E, Robertson Gabriella L, Bodnya Caroline, Romero-Morales Alejandra, O'Rourke Rebecca, Gama Vivian, Siegenthaler Julie A
| 期刊: | Stem Cells and Development | 影响因子: | 2.000 |
| 时间: | 2025 | 起止号: | 2025 Apr;34(7-8):152-163 |
| doi: | 10.1089/scd.2024.0231 | 研究方向: | 神经科学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
