Prophylactic Effects of Radiofrequency Electromagnetic Field on Pulmonary Ischemia-Reperfusion via HIF-1α/eNOS Pathway and BCL2/BAX Signaling.

射频电磁场通过 HIF-1α/eNOS 通路和 BCL2/BAX 信号传导对肺缺血再灌注的预防作用

阅读:8
作者:Akin Süleyman Emre, Asci Halil, Tepebasi Muhammet Yusuf, Ilhan İlter, Ozmen Özlem, Comlekci Selçuk, Taner Rümeysa, Camas Hasan Ekrem, Keklik Ayşegül, Yazkan Rasih
This study aimed to investigate the vascular effects of a radiofrequency electromagnetic field (RF-EMF) applied in the lung ischemia and reperfusion (IR) model on the hypoxia-inducible factor 1 alpha (Hif-1α)/endothelial nitric oxide synthase (eNOS) pathway and B cell lymphoma 2 (BCL2)/BCL-2 associated X protein (BAX) signaling. Forty male Wistar rats were randomly divided into four groups, each consisting of 10 rats: Sham, IR, IR + RF-EMF, and RF-EMF. IR was applied to rats by 60 min of clamping hilus of left lungs and 60 min of reperfusion. Rats were kept in the RF-EMF unit for 60 min with or without activation. After sacrification, lung tissues were excised for histopathological, immunohistochemical, biochemical, and genetic analyses. IR injury led to increased damage-related emphysematous findings, significant hyperemia, and increased septal tissue thickness, as observed histopathologically, and immunoexpression levels of tumor necrosis factor-alpha and caspase-3. In addition, it was noted that the biochemical parameters total oxidant status, oxidative stress index, and genetic parameters Hif 1 α, eNOS, BAX increased, and BCL2 decreased due to IR damage. In the IR-RF-EMF group, improvement has been detected in all parameters. RF-EMF applied in the IR model exerts antioxidant, antiapoptotic, and anti-inflammatory effects on lung tissue damage through the Hif-1α/eNOS pathway and BCL-2/BAX signaling. The use of RF-EMF in IR damage is promising, as models that examine the long-term effects of RF-EMF at different frequencies.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。