Interferon gamma induced-ACSL5 shapes the lipidome of kidney tubular cells.

干扰素γ诱导的ACSL5塑造肾小管细胞的脂质组

阅读:9
作者:Poindessous Virginie, Sampaio Julio L, Bouidghaghen Lydia, Nemazanyy Ivan, Pallet Alexandre, Naesens Maarten, Vaulet Thibaut, Anglicheau Dany, Pallet Nicolas
Acyl-CoA synthetase long-chain family (ACSL) enzymes are critical in the activation of long-chain fatty acid. To determine the regulatory mechanisms of ACSL5 and its biological functions within the kidney tubule, we generated transcriptomic, metabolomic, and lipidomic data from experimental models and patient cohorts. We show that ACSL5 is a constituent of a gamma interferon-related gene signature linked to rejection in kidney transplant recipients and the urinary metabolome of kidney transplant recipients who experienced rejection exhibited a deficiency in ACSL5 substrates. We demonstrate that ACSL5 expression is induced in kidney tubular cells in response to IRF-1 signaling, and that it is involved in maintaining ATP production and cell viability and influences their lipid composition, reducing the accumulation of ceramides and the contents in glycerolipids. Thus, modulation of the activity of ACSL5 could impact tubular cell energy metabolism and lipid composition, with a clinical impact in response to kidney allograft injury.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。