Interferon gamma induced-ACSL5 shapes the lipidome of kidney tubular cells.

干扰素γ诱导的ACSL5塑造肾小管细胞的脂质组

阅读:5
作者:Poindessous Virginie, Sampaio Julio L, Bouidghaghen Lydia, Nemazanyy Ivan, Pallet Alexandre, Naesens Maarten, Vaulet Thibaut, Anglicheau Dany, Pallet Nicolas
Acyl-CoA synthetase long-chain family (ACSL) enzymes are critical in the activation of long-chain fatty acid. To determine the regulatory mechanisms of ACSL5 and its biological functions within the kidney tubule, we generated transcriptomic, metabolomic, and lipidomic data from experimental models and patient cohorts. We show that ACSL5 is a constituent of a gamma interferon-related gene signature linked to rejection in kidney transplant recipients and the urinary metabolome of kidney transplant recipients who experienced rejection exhibited a deficiency in ACSL5 substrates. We demonstrate that ACSL5 expression is induced in kidney tubular cells in response to IRF-1 signaling, and that it is involved in maintaining ATP production and cell viability and influences their lipid composition, reducing the accumulation of ceramides and the contents in glycerolipids. Thus, modulation of the activity of ACSL5 could impact tubular cell energy metabolism and lipid composition, with a clinical impact in response to kidney allograft injury.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。