Analysis of combinatorial cohesin subunit gene deletions in budding yeast.

对出芽酵母中内聚蛋白亚基基因缺失的组合分析

阅读:29
作者:Duke Grace, Skibbens Robert V
Throughout the cell cycle, DNA molecules convert between hierarchical intramolecular (cis) and intermolecular (trans) associations. Cohesin ATPase complexes produce both types of DNA associations which collectively are required for sister chromatid segregation, chromatin condensation, genomic architecture, gene transcription, and DNA repair. The mechanisms that regulate cohesin cis- and trans-activities, however, remain controversial. A popular model is that a regulatory complex (Pds5, Irr1/Scc3, and Rad61) sits atop a core ring-like complex (Mcd1/Scc1, Smc1, and Smc3), the latter of which exhibits the inherent ATPase activities responsible for producing cis- and trans-DNA conformations. Additional proteins transiently interact with cohesins to promote cohesin deposition onto DNA (Scc2 and Scc4) or stabilize cohesin-DNA binding (Eco1/Ctf7). Of these 9 components, only RAD61 is nonessential. Recent findings, however, identified pairs of suppressor mutations that support the viability of cells individually deleted for either PDS5 or ECO1/CTF7 (herein ECO1). Intriguingly, CLN2 deletion is common in both suppressor pairs, suggesting that combined suppressor mutations may support the viability of cells co-deleted for both ECO1 and PDS5. These results further suggest that the addition of other suppressor mutations (such as ELG1 and RAD61) may support the viability of cells deleted of all auxiliary subunits-including IRR1/SCC3 (herein SCC3). Here, we test these predictions and report on novel gene deletion combinations required for cell cycle progression and cell viability.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。