A central challenge in developing personalized cancer cell immunotherapy is the identification of tumor-reactive T cell receptors (TCRs). By exploiting the distinct transcriptomic profile of tumor-reactive T cells relative to bystander cells, we build and benchmark TRTpred, an antigen-agnostic in silico predictor of tumor-reactive TCRs. We integrate TRTpred with an avidity predictor to derive a combinatorial algorithm of clinically relevant TCRs for personalized T cell therapy and benchmark it in patient-derived xenografts.
Identification of clinically relevant T cell receptors for personalized T cell therapy using combinatorial algorithms.
利用组合算法鉴定具有临床意义的T细胞受体,用于个性化T细胞治疗
阅读:4
作者:Pétremand Rémy, Chiffelle Johanna, Bobisse Sara, Perez Marta A S, Schmidt Julien, Arnaud Marion, Barras David, Lozano-Rabella Maria, Genolet Raphael, Sauvage Christophe, Saugy Damien, Michel Alexandra, Huguenin-Bergenat Anne-Laure, Capt Charlotte, Moore Jonathan S, De Vito Claudio, Labidi-Galy S Intidhar, Kandalaft Lana E, Dangaj Laniti Denarda, Bassani-Sternberg Michal, Oliveira Giacomo, Wu Catherine J, Coukos George, Zoete Vincent, Harari Alexandre
| 期刊: | Nature Biotechnology | 影响因子: | 41.700 |
| 时间: | 2025 | 起止号: | 2025 Mar;43(3):323-328 |
| doi: | 10.1038/s41587-024-02232-0 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
