Inflammatory bowel disease (IBD) encompasses Crohn's disease (CD) and ulcerative colitis (UC), is a major health problem on a global scale and its treatment is unsatisfactory. We aimed to investigate the effects of transauricular vagal nerve stimulation (tVNS) on inflammation in rats with IBD induced by trinitrobenzene sulfonic acid (TNBS). A total of 36 adult female Sprague-Dawley rats were given TNBS, or vehicle, and tVNS, or sham, every other day for 30âmin for 10âdays. Postmortem macroscopic and microscopic colon morphology were evaluated by histological staining. Additionally, IL-1β, IL-6, IL-10, and TNF-α cytokine levels in the colon and the brain were evaluated by immunohistochemistry and western blotting analysis. TNBS induced epithelial damage, inflammation, ulceration, and thickened mucosal layer in the colonic tissues. Administration of tVNS significantly ameliorated the severity of TNBS-induced tissue damage and inflammatory response. TNBS also alters pro-inflammatory and anti-inflammatory balance in the brain tissue. TVNS application significantly suppressed the protein levels of pro-inflammatory cytokines, namely IL-1β, IL-6, and TNF- α while augmenting the level of anti-inflammatory cytokine IL-10 in the colonic and the brain tissue. We have shown that TNBS-mediated colonic inflammation and tissue damage are associated with neuroinflammatory responses in the brain tissue. Also demonstrated for the first time that neuroinflammatory response in the gut-brain axis is suppressed by tVNS in the IBD model. Non-invasive tVNS stands out as a new potential treatment option for types of IBD.
Transauricular vagal nerve stimulation suppresses inflammatory responses in the gut and brain in an inflammatory bowel disease model.
在炎症性肠病模型中,经耳迷走神经刺激可抑制肠道和大脑的炎症反应
阅读:15
作者:Atalar Kerem, Alim Ece, Yigman Zeynep, Belen Hayrunnisa Bolay, Erten Fusun, Sahin Kazım, Soylu Ayse, Dizakar Saadet Ozen Akarca, Bahcelioglu Meltem
| 期刊: | Journal of Anatomy | 影响因子: | 1.900 |
| 时间: | 2025 | 起止号: | 2025 Apr;246(4):602-615 |
| doi: | 10.1111/joa.14178 | 研究方向: | 神经科学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
