Addressing the critical biological barriers of targeted accumulation and deep tumor penetration remains essential for the clinical translation of nanomedicines. However, existing nanomedicines often face challenges during in vivo transportation, including immune clearance, tumor microenvironmental barriers, and limited vascular permeability, which collectively reduce drug delivery efficiency and compromise therapeutic efficacy. Here, we present a bio-barrier-adaptable biomimetic nanoplatform, MSF@CCM, which integrates a mesoporous silica-loaded iron oxyhydroxide (MSF) core camouflaged with a homologous membrane. This design conferred dual functionality: (1) enhanced tumor accumulation and immune evasion by exploiting homologous cell-cell interactions and mimicking "self" markers, thereby effectively bypassing macrophage clearance and surpassing the limitations of traditional targeted drug delivery; and (2) amplified ultrasound (US)-mediated intratumoral penetration. The MSF core, with its unique porous structure and rough surface, significantly enhanced US cavitation effects, transiently disrupting tumor vasculature and facilitating deep penetration of nanomedicines. Upon US triggering, MSF@CCM effectively disrupted intracellular redox homeostasis, potently inducing ferroptosis via lipid peroxidation accumulation, mitochondrial morphological changes, and decreased key protein expression. This combined therapeutic strategy achieved a remarkable 96.5% tumor growth inhibition in vivo while maintaining favorable biocompatibility. Our findings establish a novel paradigm for overcoming multidimensional bio-barriers through biohybrid engineering and physical energy synergy, offering a promising modality for enhanced cancer therapy.
Bio-barrier-adaptable biomimetic nanomedicines combined with ultrasound for enhanced cancer therapy.
生物屏障适应性仿生纳米药物与超声波结合,可增强癌症治疗效果
阅读:5
作者:Guo Juan, Pan Xueting, Wu Qingyuan, Li Ping, Wang Chaohui, Liu Shuang, Zhang Haoyuan, Huang Zezhong, Mou Xiaozhou, Liu Huiyu, Xue Jiajia
| 期刊: | Signal Transduction and Targeted Therapy | 影响因子: | 52.700 |
| 时间: | 2025 | 起止号: | 2025 Apr 25; 10(1):137 |
| doi: | 10.1038/s41392-025-02217-8 | 研究方向: | 肿瘤 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
