PPP2CB aggravates atherosclerosis-related dyslipidemia via LOX-1/MAPK/ERK signaling pathway.

PPP2CB 通过 LOX-1/MAPK/ERK 信号通路加重动脉粥样硬化相关的血脂异常

阅读:19
作者:An He, Cheng Dong-Liang, Xia Xian-Ru, Li Xian-Dong, Ruan Zhi-Hua, Peng Chun-Yan
BACKGROUND: Dyslipidemia has been extensively documented as a key driver of cardiovascular pathology. Regulating lipid homeostasis holds promise for treating atherosclerosis (AS). Although the protein phosphatase 2 catalytic subunit beta (PPP2CB) is involved in post-transcriptional gene regulation, its role in AS-associated dyslipidemia is not well understood. METHODS: The study included both human participants and animal models. The following techniques were employed: cell culture, extraction of exosomes, preparation of pooled hyperlipidemic serum (HS), transfection, western blotting, immunofluorescence staining, quantitative reverse transcription polymerase chain reaction (qRT-PCR), co-immunoprecipitation, low-density lipoprotein cholesterol (LDL-C) uptake assay, biochemical assays, assessment of aortic atherosclerotic lesions, as well as statistical analysis. RESULTS: This study identified a marked upregulation of PPP2CB expression in peripheral blood leukocytes of AS patients, artery plaque of ApoE(-/-) mice given a high-fat diet, and hepatic cells exposed to hyperlipidemic stimuli. Overexpression of PPP2CB in hepatic cells exacerbated lipid accumulation and low-density lipoprotein uptake, whereas silencing PPP2CB mitigated this effect. Immunofluorescence co-localization and co-immunoprecipitation analysis confirmed a direct interaction between PPP2CB and lectin-like oxidized LDL receptor-1 (LOX-1). Notably, PPP2CB manipulation disrupted hyperlipidemia-induced LOX-1 expression. Additionally, PPP2CB-mediated lipid dysregulation was linked to the activation of the LOX-1/ mitogen-activated protein kinase (MAPK)/ extracellular signal-regulated kinase (ERK) signaling cascade. CONCLUSIONS: These results unveil PPP2CB as a novel lipid regulator in the progression of pathological AS and highlight its involvement in signaling regulation during abnormal lipid metabolism. PPP2CB could be considered a promising candidate for biomarker development and therapeutic intervention in AS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。