Death of cardiac fibroblasts (CFs) by ischemia/reperfusion (I/R) has major implications for cardiac wound healing. In in vivo models of myocardial infarction, toll-like receptor 4 (TLR4) activation has been reported as a cardioprotector; however, it remains unknown whether TLR4 activation can prevent CF death triggered by simulated I/R (sI/R). In this study, we analyzed TLR4 activation in neonate CFs exposed to an in vitro model of sI/R and explored the participation of the pro-survival kinases Akt and ERK1/2. Simulated ischemia was performed in a free oxygen chamber in an ischemic medium, whereas reperfusion was carried out in normal culture conditions. Cell viability was analyzed by trypan blue exclusion and the MTT assay. Necrotic and apoptotic cell populations were evaluated by flow cytometry. Protein levels of phosphorylated forms of Akt and ERK1/2 were analyzed by Western blot. We showed that sI/R triggers CF death by necrosis and apoptosis. In CFs exposed only to simulated ischemia or only to sI/R, blockade of the TLR4 with TAK-242 further reduced cell viability and the activation of Akt and ERK1/2. Preconditioning with lipopolysaccharide (LPS) or treatment with LPS in ischemia or reperfusion was not protective. However, LPS incubation during both ischemia and reperfusion periods prevented CF viability loss induced by sI/R. Furthermore, LPS treatment reduced the sub-G1 population, but not necrosis of CFs exposed to sI/R. On the other hand, the protective effects exhibited by LPS were abolished when TLR4 was blocked and Akt and ERK1/2 were inhibited. In conclusion, our results suggest that TLR4 activation protects CFs from apoptosis induced by sI/R through the activation of Akt and ERK1/2 signaling pathways.
Toll-Like Receptor 4 Activation Prevents Rat Cardiac Fibroblast Death Induced by Simulated Ischemia/Reperfusion.
Toll 样受体 4 激活可预防模拟缺血/再灌注引起的大鼠心脏成纤维细胞死亡
阅读:4
作者:Parra-Flores Pablo, Espitia-Corredor Jenaro, Espinoza-Pérez Claudio, Queirolo Cristian, Ayala Pedro, Brüggendieck Francisca, Salas-Hernández Aimee, Pardo-Jiménez Viviana, DÃaz-Araya Guillermo
| 期刊: | Frontiers in Cardiovascular Medicine | 影响因子: | 2.900 |
| 时间: | 2021 | 起止号: | 2021 Jun 8; 8:660197 |
| doi: | 10.3389/fcvm.2021.660197 | 种属: | Rat |
| 研究方向: | 细胞生物学 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
