BACKGROUND: Drug addiction is a serious public health concern. Tramadol addiction and dependence have been documented in recent years, most commonly in young adults, making tramadol use a significant health concern. The study investigated the long-term effects of tramadol intoxication on the γ-aminobutyric acid (GABA) system and tricarboxylic acid cycle enzymes in the brains of rats, focusing on regions with a high number of GABAergic neurons. METHODS: In this animal study, three treatment groups of adult male rats were considered. Rats were divided into three treatment groups: control no tramadol was given, Gp 25 mg/Kg tramadol was given 25 mg/kg for one month by oral gavage, and Gp 50 mg/Kg tramadol was given 50 mg/kg for one month by oral gavage for one month, and the enzyme activities for GABA transaminase (GABA-T), succinic semialdehyde dehydrogenase (SSA-DH), succinate dehydrogenase (SDH), and isocitrate dehydrogenase (IDH) were measured using ELISA kits, on brain tissue samples from the cerebellum, brain stem, cerebral cortex, thalamus, and hypothalamus. Histopathological analysis of the cerebral cortex was conducted using hematoxylin-eosin and Nauta silver staining. Statistical analysis for GABA shunt enzymes and tricarboxylic acid cycle enzymes was conducted using one-way ANOVA followed by Tukey's multiple means comparisons. RESULTS: Tramadol significantly (P < 0.05) reduced the levels of GABA-T, SSA-DH, and IDH enzymes across various brain regions, with the most pronounced reductions observed in the brain stem and hypothalamus. In contrast, SDH enzyme levels remained largely unchanged in most regions. Additionally, structural changes in the brain were noted, including vascular congestion, neuronal degeneration, and disruption of cortical layers. These alterations were more severe in the high-dose group, suggesting that higher doses of Tramadol may lead to more extensive brain damage. CONCLUSION: Tramadol exposure was found to cause biochemical and histopathological alterations in the nervous tissue through impairment of GABA metabolism.
Biochemical and Histopathological Alterations Induced by Tramadol.
曲马多引起的生化和组织病理学改变
阅读:5
作者:Abazid Husam, Alabbas Nour, Hammad Alaa, I Ramadan Osama, Al Jomaa Esraa Ebraheem, Fathi Amer Mumen, Hall F Scott
| 期刊: | Medical Journal of the Islamic Republic of Iran | 影响因子: | 0.000 |
| 时间: | 2025 | 起止号: | 2025 Feb 26; 39:31 |
| doi: | 10.47176/mjiri.39.31 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
