Targeting the sigma-1 receptor with pridopidine induces functional neurorestoration in spinal cord ischemia-reperfusion injury.

用普利多匹啶靶向 sigma-1 受体可诱导脊髓缺血再灌注损伤的功能性神经修复

阅读:3
作者:Sweed Eman, Khodir Suzan A, Motawea Shaimaa Mohamed, El-Haron Hala, Mostafa Basma Abdelnaby, Elkholy Mona S, Salim Mohammud, Shebl Doaa Z M
Spinal cord ischemia reperfusion injury (IRI) occurs with an incidence of 1-32%, often leading to paraplegia with limited prevention options. Pridopidine (Prdpn), a highly selective sigma-1 receptor (Sig-1R) agonist, serves as a protein chaperone that is engaged in neuroplasticity and cellular defense. This research aimed to assess the neuroprotective properties of Prdpn in spinal cord IRI in rats and investigate the underlying mechanisms. Forty male Wistar albino rats were randomly allocated into 4 groups: control, sham, IRI, and IRI + Prdpn. Tarlov's test was used to examine behavioral performance, as well as withdrawal from agonizing stimuli and the placing/stepping reflex (SPR). Biochemical markers, including spinal malondialdehyde (MDA), AOPP, antioxidant GPX, TNF-α and IL-1β, and apoptotic caspase-3, were measured, along with BDNF, GDNF, and Sig-1R gene expression. Histopathological changes in spinal cord tissue were also evaluated. Spinal cord IRI significantly caused neurological deficits, evidenced by lower scores in Tarlov's test, withdrawal from agonizing stimuli, and SPR. Biochemically, spinal cord IRI led to decreased GPX and increased MDA, AOPP, TNF-α, IL-1β, caspase-3, and GDNF levels, along with downregulated BDNF and Sig-1R gene expression. Histopathologically, spinal cord IRI resulted in greater spinal neuronal degeneration, apoptosis, and demyelination. However, treatment with Prdpn significantly improved behavioral outcomes and partially reversed the biochemical and histopathological alterations. Prdpn improved spinal cord IRI-induced behavioral deficits through its antioxidant, anti-inflammatory, anti-apoptotic, and neurotrophic properties. It suggests promise as a potential treatment option to stop spinal cord IRI.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。