Scalable, High-Throughput Isolation of Extracellular Vesicles Using Electrokinetic-Assisted Mesh Filtration: ExoFilter.

利用电动力辅助网状过滤技术实现细胞外囊泡的可扩展、高通量分离:ExoFilter

阅读:16
作者:Lee KangMin, Bae Minju, Kim YongWoo, Jeon SoYoung, Kang Sujin, Rhee Wonjong, Shin Sehyun
As extracellular vesicles (EVs) are increasingly recognized for their superior functions for therapeutics, the need for large-scale EV isolation technology is becoming more critical for clinical and industrial applications. Most existing EV isolation methods are optimized for small-scale laboratory samples, limiting their efficiency and scalability for large-scale production. Here, an electrokinetic-assisted filtration system (ExoFilter), which introduces charge interaction into physical mesh flow filtration, is proposed as a new candidate to address the challenges of scalable EV isolation. The hybrid filtration system demonstrates outstanding high-throughput EV isolation performance (a flux of ∼750 mL/min) using only a coarse physical filter by electrokinetically arresting EVs flowing through the filter lattice. Furthermore, the recovery efficiency of ExoFilter, analysed based on the ELISA results, was found to be approximately 98%, demonstrating the filter's exceptional efficiency in EV isolation. Additionally, ExoFilter enables the rapid isolation of EVs from small samples as little as 200 µL, facilitating quick and easy blood-based EV research. Furthermore, low-molecular-weight albumin from plasma samples was effectively removed. The high-throughput and high-efficiency characteristics of ExoFilter make it well-suited for scalable EV production, offering greater convenience for various clinical applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。