Colloidal quantum dots (QDs) and graphene hybrids have emerged as promising platforms for optoelectronic and biosensing applications due to their unique photophysical and electronic properties. This study investigates the fundamental mechanism underlying the photoluminescence (PL) quenching and recovery in graphene-QD hybrid systems using single-layer graphene field-effect transistors (SLG-FETs) and time-resolved photoluminescence (TRPL) spectroscopy. We demonstrate that PL quenching and its recovery are primarily driven by charge transfer, as evidenced by an unchanged fluorescence lifetime upon quenching. Density functional theory calculations reveal a significant charge redistribution at the graphene-QD interface, corroborating experimental observations. We also provide a simple analytical quantum mechanical model to differentiate charge transfer-induced PL quenching from resonance energy transfer. Furthermore, we leverage the charge transfer mechanism for ultrasensitive biosensing to detect biomarkers such as immunoglobulin G (IgG) at femtomolar concentrations. The sensor's electrical response, characterized by systematic shifts in the Dirac point of SLG-FETs, confirms the role of analyte-induced charge modulation in PL recovery. Our findings provide a fundamental framework for designing next-generation graphene-based biosensors with exceptional sensitivity and specificity.
Unraveling Charge Transfer Mechanisms in Graphene-Quantum Dot Hybrids for High-Sensitivity Biosensing.
揭示石墨烯-量子点杂化物中的电荷转移机制,用于高灵敏度生物传感
阅读:7
作者:Francis Shinto Mundackal, Sanabria Hugo, Podila Ramakrishna
| 期刊: | Biosensors-Basel | 影响因子: | 5.600 |
| 时间: | 2025 | 起止号: | 2025 Apr 24; 15(5):269 |
| doi: | 10.3390/bios15050269 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
