Macrophages have been recognized as pivotal players in the progression of MASLD/MASH. However, the molecular mechanisms underlying their multifaceted functions in the disease remain to be further clarified. In the current study, we developed a new mouse model with YAP activation in macrophages to delineate the effect and mechanism of YAP signaling in the pathogenesis of MASLD/MASH. Genetically modified mice, featuring specific depletion of both Mst1 and Mst2 in macrophages/monocytes, were generated and exposed to a high-fat diet for 12âweeks to induce MASLD. Following this period, livers were collected for histopathological examination, and liver non-parenchymal cells were isolated and subjected to various analyses, including single-cell RNA-sequencing, immunofluorescence and immunoblotting and qRT-PCR to investigate the impact of YAP signaling on the progression of MASLD. Our data revealed that Mst1/2 depletion in liver macrophages enhanced liver inflammation and fibrosis in MASLD. Using single-cell RNA-sequencing, we showed that YAP activation via Mst1/2 depletion upregulated the expressions of both pro-inflammatory genes and genes associated with resolution/tissue repair. We observed that YAP activation increases Kupffer cell populations (i.e., Kupffer-2 and Kupffer-3) which are importantly implicated in the pathogenesis of MASLD/MASH. Our data indicate that YAP activation via Mst1/2 deletion enhances both the pro-inflammatory and tissue repairing functions of Kupffer-1 and -2 cells at least in part through C1q. These YAP-regulatory mechanisms control the plasticity of liver macrophages in the context of MASLD/MASH. Our findings provide important evidence supporting the critical regulatory role of YAP signaling in liver macrophage plasticity and the progression of MASLD. Therefore, targeting the Hippo-YAP pathway may present a promising therapeutic strategy for the treatment of MASH.
YAP activation in liver macrophages via depletion of MST1/MST2 enhances liver inflammation and fibrosis in MASLD.
MASLD 中,肝巨噬细胞中 YAP 的激活通过消耗 MST1/MST2 来增强肝脏炎症和纤维化
阅读:13
作者:Zhang Jinqiang, Chen Weina, Song Kyoungsub, Song Kejing, Kolls Jay, Wu Tong
| 期刊: | FASEB Journal | 影响因子: | 4.200 |
| 时间: | 2024 | 起止号: | 2024 Sep 15; 38(17):e70026 |
| doi: | 10.1096/fj.202400813RR | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
