Recessive, pathogenic AARS1 variants display variable loss-of-function and dominant-negative effects.

隐性致病性 AARS1 变异体表现出不同的功能丧失和显性负效应

阅读:6
作者:Kuo Molly E, Jonatzke Kira E, Parish Maclaine, Antonellis Anthony
Alanyl-tRNA synthetase 1 (AARS1) has been implicated in multi-system recessive phenotypes and in later-onset dominant neuropathy; to date, no single variant has been associated with both dominant and recessive diseases, raising questions about shared mechanisms between the two inheritance patterns. AARS1 variants associated with recessive disease result in loss-of-function or hypomorphic alleles, and this has been demonstrated, in part, via yeast complementation assays. However, pathogenic alleles have not been assessed in a side-by-side study. Here, we employed a humanized yeast model to evaluate the functional consequences of all AARS1 missense variants reported in recessive disease. The majority of variants showed variable loss-of-function effects, ranging from no growth to significantly reduced growth. These data deem yeast a reliable model to test the effects of AARS1 variants; however, our data also indicate that this model is prone to false-negative results and is not informative for genotype-phenotype studies. We next tested missense variants associated with no growth for dominant-negative effects. Interestingly, K81T and E99G AARS1 demonstrated both loss-of-function and dominant-negative effects, indicating that certain AARS1 variants can cause both dominant and recessive disease phenotypes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。