Fatigue Resistance and Mitochondrial Adaptations to Isometric Interval Training in Dystrophin-Deficient Muscle: Role of Contractile Load.

肌营养不良症患者肌肉的抗疲劳能力和线粒体对等长间歇训练的适应性:收缩负荷的作用

阅读:9
作者:Yamauchi Nao, Ashida Yuki, Naito Azuma, Tokuda Nao, Niibori Ayaka, Motohashi Norio, Aoki Yoshitsugu, Yamada Takashi
In normal mouse skeletal muscles, interval training (IT)-mimicking neuromuscular electrical stimulation enhances muscle fatigue resistance and mitochondrial content, with greater gains observed at high (100 Hz stimulation, IT100) compared to low (20 Hz stimulation, IT20) contractile load. In this study, we compared the effects of repeated IT100 and IT20 on fatigue resistance and mitochondrial adaptations in young male mdx52 mice (4- to 6-week-old), an animal model for Duchenne muscular dystrophy. Plantar flexor muscles were stimulated in vivo using supramaximal electrical stimulation to induce isometric contractions every other day for 4 weeks (a total of 15 sessions). In non-trained muscles of mdx52 mice, decreased fatigue resistance was associated with reduced citrate synthase activity, lower peroxisome proliferator-activated receptor γ coactivator 1 alpha (PGC-1α) protein expression, and diminished levels of mitochondrial respiratory chain complex II, and an increased percentage of Evans Blue dye-positive areas. IT100, but not IT20, markedly improved fatigue resistance and restored all these alterations in mdx52 mice. Furthermore, an acute session of IT100, but not IT20, led to increased phosphorylation of p38 mitogen-activated protein kinase (MAPK) and elevated mRNA levels of PGC-1α, which were blocked by the p38 MAPK inhibitor SB203580. These findings suggest that contractile load is a key determinant of isometric IT-induced improvements in fatigue resistance, even in dystrophin-deficient muscles, potentially through a p38 MAPK/PGC-1α-mediated increase in mitochondrial content.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。