FBXO9 mediated the ubiquitination and degradation of YAP in a GSK-3β-dependent manner.

FBXO9 以 GSK-3β 依赖的方式介导 YAP 的泛素化和降解

阅读:11
作者:Jin Yili, Xue Yun, Yao Jiatao, Xu Chengyun, Yu Rui
The Hippo signaling pathway effector YAP (Yes-associated protein) serves as a critical transcriptional regulator involved in a wide range of biological processes, including oncogenesis. Despite its potential as a therapeutic target, pharmacologically targeting the Hippo/YAP axis remains challenging, necessitating further exploration of the mechanisms governing YAP regulation. In this study, we identify the Cullin-RING E3 ligase complex SCF-FBXO9-CRL1 as a novel posttranslational regulator of YAP stability. Mechanistically, FBXO9 recognizes YAP through a conserved degron motif and facilitates its K48-linked polyubiquitination at lysine 76 (K76), thereby promoting proteasomal degradation. Notably, we demonstrate that phosphorylation of YAP at Ser338 and Thr342 by GSK-3β primes YAP for FBXO9 recognition, leading to subsequent ubiquitination. Furthermore, our analysis of the signaling cascade reveals that Akt kinase activity modulates this regulatory axis by influencing the phosphorylation status of GSK-3β. Pharmacological inhibition of Akt signaling leads to YAP degradation in a GSK-3β/FBXO9-dependent manner, significantly enhancing chemosensitivity in cancer models. These findings establish a previously unrecognized regulatory axis involving Akt, GSK-3β, FBXO9, and YAP that controls YAP protein turnover, providing a mechanistic basis for therapeutic strategies that combine Akt inhibitors with conventional chemotherapeutics. Our work advances the understanding of posttranslational YAP regulation and identifies several potential therapeutic targets for YAP-driven malignancies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。