PDE9A Inhibition Improves Coronary Microvascular Rarefaction and Left Ventricular Diastolic Dysfunction in the ZSF1 Rat Model of HFpEF.

PDE9A 抑制剂可改善 ZSF1 大鼠 HFpEF 模型中的冠状动脉微血管稀疏和左心室舒张功能障碍

阅读:10
作者:Fopiano Katie Anne, Zhazykbayeva Saltanat, El-Battrawy Ibrahim, Buncha Vadym, Pearson William M, Hardell Davis J, Lang Liwei, Hamdani Nazha, Bagi Zsolt
OBJECTIVE: Heart failure with preserved ejection fraction (HFpEF) commonly arises from comorbid diseases, such as hypertension, obesity, and diabetes mellitus. Selective inhibition of phosphodiesterase 9A (PDE9A) has emerged as a potential therapeutic approach for treating cardiometabolic diseases. Coronary microvascular disease (CMD) is one of the key mechanisms contributing to the development of left ventricular (LV) diastolic dysfunction in HFpEF. Our study aimed to investigate the mechanisms by which PDE9A inhibition could ameliorate CMD and improve LV diastolic function in HFpEF. METHODS AND RESULTS: The obese diabetic Zucker fatty/spontaneously hypertensive heart failure F1 hybrid (ZSF1) rat model of HFpEF was employed in which it was found that a progressively developing coronary microvascular rarefaction is associated with LV diastolic dysfunction when compared to lean, nondiabetic hypertensive controls. Obese ZSF1 rats had an increased cardiac expression of PDE9A. Treatment of obese ZSF1 rats with the selective PDE9A inhibitor, PF04447943 (3 mg/kg/day, oral gavage for 2 weeks), improved coronary microvascular rarefaction and LV diastolic dysfunction, which was accompanied by reduced levels of oxidative and nitrosative stress markers, hydrogen peroxide, and 3-nitrotyrosine. Liquid chromatography-mass spectrometry (LC-MS) proteomic analysis identified peroxiredoxins (PRDX) as downregulated antioxidants in the heart of obese ZSF1 rats, whereas Western immunoblots showed that the protein level of PRDX5 was significantly increased by the PF04447943 treatment. CONCLUSIONS: Thus, in the ZSF1 rat model of human HFpEF, PDE9A inhibition improves coronary vascular rarefaction and LV diastolic dysfunction, demonstrating the usefulness of PDE9A inhibitors in ameliorating CMD and LV diastolic dysfunction through augmenting PRDX-dependent antioxidant mechanisms.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。