Enhancing Hemocompatibility in ECMO Systems With a Fibrinolytic Interactive Coating: in Vitro Evaluation of Blood Clot Lysis Using a 3D Microfluidic Model.

利用纤溶相互作用涂层增强 ECMO 系统的血液相容性:使用 3D 微流控模型对血栓溶解进行体外评估

阅读:17
作者:Witzdam Lena, Sandhu Samarth, Shin Suji, Hong Yeahwa, Kamal Shanzeh, Grottke Oliver, Cook Keith E, Rodriguez-Emmenegger Cesar
Blood-contacting medical devices, especially extracorporeal membrane oxygenators (ECMOs), are highly susceptible to surface-induced coagulation because of their extensive surface area. This can compromise device functionality and lead to life-threatening complications. High doses of anticoagulants, combined with anti-thrombogenic surface coatings, are typically employed to mitigate this risk, but such treatment can lead to hemorrhagic complications. Therefore, bioactive surface coatings that mimic endothelial blood regulation are needed. However, evaluating these coatings under realistic ECMO conditions is both expensive and challenging. This study utilizes microchannel devices to simulate ECMO fluid dynamics and assess the clot-lysis efficacy of a self-activating fibrinolytic coating system. The system uses antifouling polymer brushes combined with tissue plasminogen activator (tPA) to induce fibrinolysis at the surface. Here, tPA catalyzes the conversion of blood plasminogen into plasmin, which dissolves clots. This positive feedback loop enhances clot digestion under ECMO-like conditions. This findings demonstrate that this coating system can significantly improve the hemocompatibility of medical device surfaces.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。