Duck plague virus US3 kinase phosphorylates and induces STING degradation to inhibit innate immune responses.

鸭瘟病毒 US3 激酶磷酸化并诱导 STING 降解,从而抑制先天免疫反应

阅读:8
作者:Tian Bin, Tian Yanming, Cai Dongjie, Cao Huanhuan, Wu Liping, Wang Mingshu, Yang Qiao, Wu Ying, Jia Renyong, Zhu Dekang, Liu Mafeng, Chen Shun, Zhao Xinxin, Zhang Shaqiu, Huang Juan, Sun Di, Ou Xumin, Wu Zhen, Cheng Anchun
Duck plague virus (DPV) causes the highest mortality rate among aquatic birds; however, its antago nistic mechanism against antiviral innate immune responses remains elusive. In this study, we systematically screened and found that most DPV genes have inhibitory potential for duck cyclic guanosine monophosphate-adenosine monophosphate synthetase (cGAS)/stimulator of interferon (IFN) gene (STING) pathway-mediated antiviral responses, with the DPV US3 kinase showing the strongest inhibitory activity. Co-immunoprecipitation and immunoblotting assays demonstrated that DPV US3 interacted with STING and induced its degradation. Further mutagenesis experiments revealed that DPV US3 kinase activity was essential for phosphorylating STING, reducing STING dimerization, and inhibiting STING-mediated antiviral responses. Sequence alignment and mutagenesis studies have demonstrated that DPV US3 phosphorylates STING at serine 86, near the Endoplasmic reticulum (ER) retention sequence (R(82)YRGS(86)), disrupting its association with tank-binding kinase 1 (TBK1) and inducing STING degradation. Finally, US3 knockout attenuated DPV replication by activating higher levels of IFN and ISGs in vitro and in vivo. These results demonstrate that DPV promotes viral infection and pathogenicity by inducing STING degradation through the encoded US3 kinase, providing new insights into the mechanism of DPV immune evasion.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。