One of the main challenges with many cancer immunotherapies is that biomarkers are needed for targeting. These biomarkers are often associated with tumors but are not specific to a particular tumor and can lead to damage in healthy tissues, resistance to treatment, or the need for customization for different types of cancer due to variations in targets. A promising alternative approach is to target the acidic microenvironment found in most solid tumor types. This can be achieved using the pH (Low) Insertion Peptide (pHLIP), which inserts selectively into cell membranes under acidic conditions, sparing healthy tissues. pHLIP has shown potential for imaging, drug delivery, and surface display. For instance, we previously used pHLIP to display epitopes on the surfaces of cancer cells, enabling antibody-mediated immune cell recruitment and selective killing of cancer cells. In this study, we further explored this concept by directly fusing an anti-CD16 nanobody, which activates natural killer (NK) cells, to pHLIP, eliminating the need for antibody recruitment. Our results demonstrated the insertion of pH-sensitive agents into cancer cells, activation of the CD16 receptor on effector cells, and successful targeting and destruction of cancer cells by high-affinity CD16(+) NK cells in two cancer cell lines.
Enhancing Anti-Cancer Immune Response by Acidosis-Sensitive Nanobody Display.
利用酸中毒敏感纳米抗体展示增强抗癌免疫反应
阅读:10
作者:Knepper Leah E, Ankrom Emily T, Thévenin Damien
| 期刊: | Journal of Membrane Biology | 影响因子: | 2.900 |
| 时间: | 2024 | 起止号: | 2024 Dec;257(5-6):391-401 |
| doi: | 10.1007/s00232-024-00322-3 | 研究方向: | 免疫/内分泌 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
