Third-Hand Smoke Exacerbates H(2)O(2)-Driven Airway Responses in A549 Cells.

三手烟加剧 A549 细胞中 H(2)O(2) 驱动的气道反应

阅读:6
作者:Reis Rengin, Kolci Kübra, Özhan Yağmur, Çoşkun Göknil Pelin, Sipahi Hande
OBJECTIVES: Third-hand smoke (THS) is residual smoke after extinguishing a cigarette and adhering to surfaces. Re-emission into the air also makes THS a health concern for those who suffer from respiratory diseases. The present study aimed to elucidate the mechanistic pathways involved in THS-induced respiratory toxicity and the accelerative potential of THS in an H(2)O(2)-induced oxidative stress model of human airway epithelia in vitro. MATERIALS AND METHODS: THS extracted from terrycloth exposed to 3R4F cigarettes was assessed via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay to identify cytotoxicity. The reactive oxygen species (ROS) level was determined via 2,7-dichlorofluorescein diacetate (DCFDA) fluorescence intensity in a flow cytometer, and glutathione (GSH), malondialdehyde (MDA), and catalase (CAT) activity were assessed spectrophotometrically. Interleukin-6 (IL-6) level was measured via enzyme-linked immunosorbent assay. RESULTS: THS 50% (v/v) with significant cytotoxicity in A549 cells upregulated intracellular ROS levels via a right-shifted fluorescence intensity of DCFDA compared with the control (p < 0.05), which was also amplified with H(2)O(2) co-treatment. MDA levels remarkably increased with THS (p < 0.05). Both THS and THS + H(2)O(2) led to notable GSH depletion, increased CAT activity, and increased IL-6 levels, which were attenuated by the negative control (N-acetylcysteine, 1 mM) (p < 0.05). CONCLUSION: The induction of oxidative stress may be an important event in THS-induced airway toxicity that may contribute to the progression of respiratory diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。