Light-assisted bioprinting of protein-derived hydrogels has been widely used for tissue engineering and regenerative medicine. The practical challenges of the photoinitiators (PIs) are often overlooked in using photo-crosslinkable bioinks for in situ and in vitro applications. A higher concentration of PI is believed to increase the network density of a hydrogel thus reducing its mass transfer capacity, but PI can form reactive oxygen species (ROS) and cause unwanted side reactions around biological compartments. This study systematically investigates the role of ROS generation on mesenchymal stem cells encapsulated in gelatin-methacryloyl hydrogels when using type I PIs-e.g. lithium phenyl(2,4,6-trimethyl-benzoyl)phosphinate and 2-hydroxy-1-(4-hydroxyethyl-phenyl)-2-methyl-1-propanone, and type II PI-e.g. Eosin Y. The results reveal that higher concentrations of type I PIs provide a higher elastic modulus at the expense of enhanced ROS generation and a proportional decrease in viability. We report a novel hydrogel system with minimal PI loading where a reduction in elastic modulus is accompanied by a simultaneous decrease in pore size and ROS level leading to a significant increase in stem cell viability over one week of in vitro culture. In contrast, the type II PI reveals a moderate fluctuation of elastic modulus over a range of PI concentration correlated to fluctuations in ROS generation. Monitoring ROS level variations enables evaluation of each PI's impact on cell response, providing a strategy for the biofabrication of cell-laden constructs. This framework can inform the rational design of photo-crosslinkable hydrogels for light-assisted bioprinting and in situ crosslinking applications in regenerative medicine.
Design considerations for photoinitiator selection in cell-laden gelatin methacryloyl hydrogels.
细胞负载明胶甲基丙烯酰水凝胶中光引发剂选择的设计考虑因素
阅读:6
作者:Dogan Elvan, Austin Ann, Pourmostafa Ayda, Yogeshwaran Swaprakash, Hosseinabadi Hossein Goodarzi, Miri Amir K
| 期刊: | Biomaterials Science | 影响因子: | 5.700 |
| 时间: | 2025 | 起止号: | 2025 Jul 23 |
| doi: | 10.1039/d5bm00550g | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
