Invasive pulmonary aspergillosis (IPA) is a severe fungal disease caused by Aspergillus fumigatus (Af) that may spread hematogenously to extrapulmonary organs. IPA is typically associated with a broad spectrum of immunocompromised conditions and constitutes a high mortality rate. While the association of influenza as a risk for secondary bacterial infections is well appreciated, emerging evidence indicates that influenza-hospitalized patients demonstrate increased susceptibility to severe aspergillosis infection. In this study, we developed a murine Influenza A Virus (IAV)-Af co-infection model and investigated the role of IAV host response in promoting invasive Af infection. Our data show that IAV temporarily suppresses neutrophil recruitment in the early phase of Af co-infection (24 hours), followed by a subsequent increase in neutrophil levels (48 hours). RNA sequencing analysis of neutrophils from IAV-Af co-infected lungs (48 hours) reveals enrichment of pathways regulating inflammatory responses and phagocytosis. Despite higher inflammatory response and phagocytosis, the host response from IAV-Af co-infected lungs had suppressive effects on neutrophil conidial killing, correlating with lung fungal load and invasion. However, the increased fungal invasion observed at 24 hours post co-infection, despite similar fungal loads in both groups (Af vs. IAV-Af), suggests that IAV-induced pathologic lung inflammation and vascular damage likely promote Af invasiveness during the initial phase of co-infection, and subsequently, the defects in neutrophil fungicidal response and exacerbated lung damage lead to sustained and fatal IPA pathogenesis in the later phase of co-infection.
Loss of pulmonary tissue protection and neutrophil microbicidal defects promote severe Aspergillus fumigatus infection during influenza A virus infection.
肺组织保护的丧失和中性粒细胞杀菌缺陷会促进甲型流感病毒感染期间的严重烟曲霉感染
阅读:15
作者:Wang Zhihan, Schmit Taylor, Guo Kai, Tripathi Jitendra Kumar, Navaeiseddighi Zahrasadat, Tyagi Antariksh, Mathur Ramkumar, Hur Junguk, Jurivich Donald, Khan Nadeem
| 期刊: | Infection and Immunity | 影响因子: | 2.800 |
| 时间: | 2025 | 起止号: | 2025 Sep 9; 93(9):e0023425 |
| doi: | 10.1128/iai.00234-25 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
