Inhibiting glycogen synthase kinase 3 suppresses TDP-43-mediated neurotoxicity in a caspase-dependent manner.

抑制糖原合成酶激酶 3 可抑制 TDP-43 介导的神经毒性,且该抑制作用依赖于 caspase

阅读:6
作者:White Matthew Anthony, Crowley Leon, Massenzio Francesca, Li Xingli, Niblock Michael, Coleman Michael Philip, Barmada Sami J, Sreedharan Jemeen
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are progressive and ultimately fatal diseases characterised by 43-kDa TAR DNA-binding protein (TDP-43) pathology. Current disease modifying drugs have modest effects and novel therapies are sorely needed. We previously showed that deletion of glycogen synthase kinase-3 (GSK3) suppresses TDP-43-mediated motor neuron degeneration in Drosophila. Here, we investigated the potential of GSK3 inhibition to ameliorate TDP-43-mediated toxicity in mammalian neurons. Expression of TDP-43 both activated GSK3 and promoted caspase mediated cleavage of TDP-43. Conversely, GSK3 inhibition reduced the abundance of full-length and cleaved TDP-43 in neurons expressing wild-type or disease-associated mutant TDP-43, ultimately ameliorating neurotoxicity. Our results suggest that TDP-43 turnover is promoted by GSK3 inhibition in a caspase-dependent manner, and that targeting GSK3 activity has therapeutic value.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。