Ceftriaxone affects ferroptosis and alleviates glial cell activation in Parkinson's disease.

头孢曲松可影响铁死亡,并减轻帕金森病中的神经胶质细胞活化

阅读:20
作者:Zhi Hui, Wang Xiaoyu, Chen Yujia, Cai Zenglin, Li Jingwei, Guo Dongkai
Parkinson's disease (PD) is the second most common neurodegenerative disorder, which is characterized by the death of dopaminergic neurons. It has been reported that ceftriaxone (CEF) exerts promising effects on alleviating dopaminergic neuron death in PD models. However, the neuroprotective mechanisms of CEF in PD have not been well understood. In the present study, to investigate the neuroprotective effects of CEF through western blot and immunofluorescence assays, two in vivo models were established, namely the 1‑methyl‑4‑phenyl‑1,2,3,6‑tetrahydropyridine (MPTP)‑ and lipopolysaccharide (LPS)‑induced models. Additionally, three in vitro models were used to explore the neuroprotective mechanisms of CEF, namely the 1‑methyl‑4‑phenylpyridinium ion (MPP+)‑induced dopaminergic neuron injury, LPS‑induced microglia activation and TNFα‑induced astrocyte activation models, with key insights derived from western blot and qPCR experiments. The in vivo studies demonstrated that CEF exerted neuroprotective effects and reduced glial cell activation. Additionally, CEF reversed the reduction of tyrosine hydroxylase and suppressed the activation of microglia and astrocytes. Furthermore, the in vitro experiments revealed that CEF could display both direct and indirect neuroprotective effects and could directly alleviate MPP+‑induced neuronal toxicity and suppress the activation of microglia and astrocytes. In addition, CEF indirectly reduced neuronal injury caused by conditioned medium from activated microglia and astrocytes. Mechanistic studies revealed that CEF inhibited the ferroptosis pathway via regulating the expression of solute carrier family 7 member 11 and glutathione peroxidase 4 in a non‑cell‑specific manner. Via inhibiting ferroptosis, CEF could directly protect dopaminergic neurons and prevent glial cell activation, and indirectly impair neurons. In conclusion, the results of the current study highlighted the potential research and therapeutic value of CEF in regulating ferroptosis in PD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。