Parkinson's disease (PD) is the second most common neurodegenerative disorder, which is characterized by the death of dopaminergic neurons. It has been reported that ceftriaxone (CEF) exerts promising effects on alleviating dopaminergic neuron death in PD models. However, the neuroprotective mechanisms of CEF in PD have not been well understood. In the present study, to investigate the neuroprotective effects of CEF through western blot and immunofluorescence assays, two in vivo models were established, namely the 1âmethylâ4âphenylâ1,2,3,6âtetrahydropyridine (MPTP)â and lipopolysaccharide (LPS)âinduced models. Additionally, three in vitro models were used to explore the neuroprotective mechanisms of CEF, namely the 1âmethylâ4âphenylpyridinium ion (MPP+)âinduced dopaminergic neuron injury, LPSâinduced microglia activation and TNFαâinduced astrocyte activation models, with key insights derived from western blot and qPCR experiments. The in vivo studies demonstrated that CEF exerted neuroprotective effects and reduced glial cell activation. Additionally, CEF reversed the reduction of tyrosine hydroxylase and suppressed the activation of microglia and astrocytes. Furthermore, the in vitro experiments revealed that CEF could display both direct and indirect neuroprotective effects and could directly alleviate MPP+âinduced neuronal toxicity and suppress the activation of microglia and astrocytes. In addition, CEF indirectly reduced neuronal injury caused by conditioned medium from activated microglia and astrocytes. Mechanistic studies revealed that CEF inhibited the ferroptosis pathway via regulating the expression of solute carrier family 7 member 11 and glutathione peroxidase 4 in a nonâcellâspecific manner. Via inhibiting ferroptosis, CEF could directly protect dopaminergic neurons and prevent glial cell activation, and indirectly impair neurons. In conclusion, the results of the current study highlighted the potential research and therapeutic value of CEF in regulating ferroptosis in PD.
Ceftriaxone affects ferroptosis and alleviates glial cell activation in Parkinson's disease.
头孢曲松可影响铁死亡,并减轻帕金森病中的神经胶质细胞活化
阅读:10
作者:Zhi Hui, Wang Xiaoyu, Chen Yujia, Cai Zenglin, Li Jingwei, Guo Dongkai
| 期刊: | International Journal of Molecular Medicine | 影响因子: | 5.800 |
| 时间: | 2025 | 起止号: | 2025 Jun |
| doi: | 10.3892/ijmm.2025.5526 | 研究方向: | 神经科学 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
